**18**. Hitesh Gakhar and J. A. Perea, Kunneth Formuale in Persistent Homology,* Preprint,**arXiv:1910.05656, 2019.*

**17.** J. L. Mike and J. A. Perea, Geometric Data Analysis Across Scales via Laplacian Eigenvector Cascading, to appear in ** Proceedings of IEEE ICMLA**,

**2019.**

**16. **L. Polanco and J. A. Perea, Adaptive template systems: Data-driven Feature Selection for Learning with Persistence Diagrams, to appear in *Proceedings of IEEE ICMLA, 2019.*

**15.** L. Polanco and J. A. Perea, Coordinatizing Data With Lens Spaces and Persistent Cohomology, to appear in* *** Proceedings of the 31st Canadian Conference on Computational Geometry (CCCG)**,

**2019.**

**14.** J. A. Perea, E. Munch and F. A. Khasawneh, Approximating Continuous Functions on Persistence Diagrams Using Template Functions, *Preprint, arXiv:1902.07190**,* **2019.**

**13**. J. A. Perea, Topological Time Series Analysis,* *** Notices of the American Mathematical Society**, vol. 66, no. 5, pp. 686-694, May

**2019.**

**12.** B. Xu, C. J. Tralie, A. Antia, M. Lin and J. A. Perea, Twisty Takens: A Geometric Characterization of Good Observations on Dense Trajectories, ** Journal of Applied and Computational Topology**,

**2019.**

**11.** J. A. Perea, Sparse Circular Coordinates via Principal Z-bundles, to appear in ** Proceedings of the 15th Abel Symposium**,

**2019.**

**10.** J. A. Perea, A Brief History of Persistence, *Morfismos**,* vol. 23, no. 1, pp. 1-16, **2019**.

**9.** J. A. Perea, Book Review: Elementary Applied Topology, by Robert W. Ghrist, Create Space 2014, and Persistence Theory: From Quiver Representations to Data Analysis, Mathematical Surveys and Monographs, Vol. 209, American Mathematical Society, 2015. ** Bulletin (New Series) of the American Mathematical Society**, September 24,

**2018.**

**8**. F. A. Khasawneh, E. Munch and J. A. Perea, Chatter Classification in Turning Using Machine Learning and Topological Data Analysis, In *14th IFAC Workshop on Time Delay Systems** TDS 2018, vol. 51, pp. 195–200. International Federation of Automatic Control*, **2018.**

**7.** C. J. Traliey and J. A. Perea, (Quasi)Periodicity Quantification in Video Data, Using Topology,* *** SIAM Journal on Imaging Sciences**, vol. 11, no. 2, pp. 1049–1077,

**2018.**

**6.** J. A. Perea, Multiscale Projective Coordinates via Persistent Cohomology of Sparse Filtrations, ** Discrete & Computational Geometry**, vol. 59, no. 1, pp. 175-255,

**2018.**

**5.** J. A. Perea and Chris Traile, Sliding windows and persistence, ** The Journal of the Acoustical Society of America**, vol. 141, no. 5, pp. 3585-3585,

**2017.**

**4.** J. A. Perea, Persistent Homology of Toroidal Sliding Window Embeddings, In 2016 ** IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)**, pp. 6435-6439,

**2016.**

**3.** J. A. Perea, A. Deckard, S. Haase, and J. Harer, SW1PerS: Sliding Windows and 1-Persistence Scoring; Discovering Periodicity in Gene Expression Time Series Data, **BMC Bioinformatics**, vol. 16, no. 1, p. 257, **2015.**

**2.** J. A. Perea and J. Harer, Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis, ** Foundations of Computational Mathematics**, vol. 15 no. 3, pp. 799-838,

**2015.**

**1.** J. A. Perea and G. Carlsson, A Klein-Bottle-Based Dictionary for Texture Representation, ** International Journal of Computer Vision**, vol. 107 no. 1, pp. 75-97,

**2014.**